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Plasmacytoid dendritic cells (pDCs) display an increased abundance in visceral adipose tissue (VAT) of humans with obesity. In
the current study, we set out to decipher the molecular mechanisms of their recruitment to VAT and the functional relevance of
this process. We observed increased pDC numbers in murine blood, liver, spleen, and VAT after feeding a high-fat diet (HFD) for
3 wk when compared with a standard diet. pDCs were enriched in fat-associated lymphoid clusters representing highly specific
lymphoid regions within VAT. HFD led to an enlargement of fat-associated lymphoid clusters with an increased density and
migratory speed of pDCs as shown by intravital multiphoton microscopy. For their recruitment into VAT, pDCs employed P-
selectin with E-selectin and L-selectin being only critical in response to HFD, indicating that the molecular cues underlying pDC
trafficking were dependent on the nutritional state. Subsequent recruitment steps required a4b1 and a4b7 integrins and
engagement of CCR7. Application of fingolimod (FTY720) abrogated egress of pDCs from VAT, indicating the involvement of
sphingosine-1-phosphate in this process. Furthermore, HFD altered pDC functions by promoting their activation and type 1 IFN
expression. Blocking pDC infiltration into VAT prevented weight gain and improved glucose tolerance during HFD. In summary,
a HFD fundamentally alters pDC biology by promoting their trafficking, retention, and activation in VAT, which in turn seems to
regulate metabolism. The Journal of Immunology, 2022, 208: 1445�1455.

Obesity is a major risk factor for metabolic diseases and
became an enormous health burden in modern societies in
the last 30 years (1). Excessive nutritional energy is stored

in the white adipose tissue dispersed s.c. throughout the body and
between internal organs. It serves as a major lipid reservoir and
additionally as a source of endocrine mediators. Especially, visceral
adipose tissue (VAT) is recognized to be highly metabolic active in
humans (2). In mice, white adipose tissue attached to the uterus of
females or epididymis of males is primarily known as VAT. In
recent years it has become evident that excessive nutritional intake
does not only affect body weight and disturb metabolism, but it also
dramatically influences immunological homeostasis (3, 4). In VAT,

classical dendritic cells (DCs) (5), invariant NK T cells (6), and gd
T cells (7) decrease with obesity whereas CD81 T cells (8), innate
lymphoid cells (9), and macrophages change in composition and
performance. VAT-resident immune cells have a variety of different
functions, including the regulation of adipokine expression, clear-
ance of apoptotic cells, and extracellular matrix remodeling (3, 10).
The shift of immune cell composition, numbers, and phenotype ini-
tiated with obesity finally results in a switch toward a proinflamma-
tory cytokine milieu (11�13) that leads to a systemic increase of
different inflammatory mediators, including free fatty acids, TNF-a,
IL-1b, and IL-6 (14, 15), which in turn promote the development of
insulin insensitivity and metabolic diseases (16).
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Within the white adipose tissue, clusters of hematopoietic cells
have been identified and named fat-associated lymphoid clusters
(FALCs) (17). These non-classical lymphoid clusters have been
described in omental, mesenteric, gonadal, and pericardial fat (17,
18). Composed of B1 and B2 cells (19), CD41 T cells, and CD11b1

myeloid cells (18), FALCs are highly vascularized (18) and, in con-
trast to lymph nodes (LNs), they are not encapsulated (17). However,
FALCs of the omentum contain high endothelial venules (HEVs)
(20), a specialized type of postcapillary venule essential for lympho-
cyte trafficking to LNs. Interestingly, FALCs increase in number and
size in response to acute or chronic inflammation of the peritoneal
cavity to initiate adaptive immune responses (17, 18, 21).
Recently, plasmacytoid DCs (pDCs) gained attention, as these rare

innate immune cells increase in frequency in VAT and liver of obese
mice and humans (22�24). In contrast to classical DCs, pDCs have a
round morphology and are characterized by their secretory function
(25). They are capable to sense viruses and self-nucleic acids (26) and
respond with rapid and robust type 1 IFN (IFN-I) expression and
secretion (27). Despite few molecular differences, the function, the
overall phenotype, and the core gene expression program is conserved
between human and murine pDCs (28), and several pDC-specific sur-
face markers have been established. Murine pDCs express sialic acid
binding Ig-like lectin H (SiglecH), plasmacytoid dendritic cell Ag-1
(PDCA-1, CD317), Ly6C, and CD45R. In steady state, pDCs express
low levels of MHC class II and costimulatory molecules and their
expression increases upon activation (29). The generation of pDCs is
mainly restricted to the bone marrow (BM), from where they enter
the blood and secondary lymphoid organs to continuously patrol
through the body. In the LN, they reach T cell areas mainly through
HEVs by employing a specific adhesion cascade (30, 31). Under
steady-state conditions, pDCs require L-selectin and during inflam-
mation additionally E-selectin to allow rolling in the LN (32). Fur-
thermore, b1 and b2 integrins as well as multiple chemokine
receptors such as CCR7 and CCR9 are essential for pDCs to adhere
and transmigrate into the LN, gut, and thymus tissue (33, 34). Similar
to T cells, pDCs egress from secondary lymphoid organs back into
the blood by sphingosine-1-phosphate (S1P)�mediated signaling
(35). S1P is a lipid mediator that is present at high concentrations in
plasma and lymph and couples to five different G protein�coupled
S1P receptors (S1PRs) (36). The decisive role of S1P in immune cell
trafficking was discovered when the immunosuppressive agent fingo-
limod (FTY720) was found to induce S1PR1, S1PR3, S1PR4, and
S1PR5 internalization in T cells to render them unresponsive to the
S1P gradient toward the circulation trapping them in secondary lym-
phatic organs (37, 38).
Within the immune system, pDCs are key players in orchestrating

sensitization, activation, and differentiation of innate and adaptive
immune cells (39). Interestingly, gene expression analyses during
obesity show an upregulation of IFN-I genes in VAT (40), and IFN-
I receptor-deficient mice fail to develop obesity and insulin insensi-
tivity (24). Furthermore, recent studies suggest that pDCs, which
represent a major source of IFN-I, may play a critical role in pro-
moting obesity (41). In this study, we set out to decipher the impact
of a high-fat diet (HFD) on the trafficking of pDCs into VAT and
their activation within this key region of obesity. We identified the
localization of pDCs in VAT and their multistep adhesion cascade
facilitating their homing into VAT. HFD resulted not only in
increased pDC infiltration and retention, but it also promoted an
activated pDC phenotype compared with a standard fat diet (SFD).
Within VAT, pDCs accumulated in FALCs where they increased in
density and mobility after HFD application. The blockade of pDC
infiltration to adipose tissue prevented weight gain and improved
glucose tolerance. In summary, we identified a unique trafficking
and activation profile of pDCs within VAT in response to HFD that

opens up new avenues for treatment of obesity by targeting pDC
homing and activation.

Materials and Methods
Animals

C57BL/6 wild-type (WT) mice were purchased from Charles River Labora-
tories (Wilmington, MA). CCR7−/− mice were bred and housed in the ani-
mal facilities of the New Research Building, Harvard Medical School
(Boston, MA). The ubiquitin C�tdTomato mice provided by Wolfgang Kas-
tenmüller (MPI Würzburg, Würzburg, Germany) and the SiglecH-GFP
reporter mice (42) were bred in the animal facility of the University of Bonn
(Bonn, Germany). Homozygous messenger of IFN-b (MOB) mice were
obtained from Stefanie Scheu (HHU Düsseldorf, Düsseldorf, Germany) (43).
Mice were housed under specific pathogen�free conditions in accordance
with National Institutes of Health guidelines. Animal experiments have been
approved by the Institutional Review Board and local authorities. Experi-
ments were performed with mice at 6�10 wk of age at Harvard Medical
School (Boston, MA), the University of Bonn, the Biomedical Center of the
Ludwig-Maximilians-Universität München, and at the Multiphoton Imaging
Core Facility at the Walter Brendel Center of Experimental Medicine in
Munich, Germany. Normal chow, HFD (Research Diets, open source;
D12492), or SFD (Research Diets, open source; D12450J) were applied for
3 wk.

Ab staining and flow cytometry

Unless stated otherwise, all Abs were obtained from BioLegend. The follow-
ing anti-mouse Abs were used: CD31 (390), SiglecH (551-PE or -FITC),
CD45R (RA3-6B2), CD11b (M1/70), CD45 (30-F11), PDCA-1 (927),
CD49d (R1-2), CD62L (MEL-14), CXCR3 (CXCR3-176), and CCR7
(4B12). E-selectin and P-selectin binding sites on pDCs were evaluated by
staining with E-selectin�human Ig Fc chimera (R&D Systems) and P-selec-
tin�human Ig Fc chimera Ab (R&D Systems). Staining for flow cytometry
was performed at 4◦C for 20�30 min in FACS buffer (1% FCS in PBS with
2 mM EDTA). Dead cells were excluded by staining with Zombie Aqua
(BioLegend, 1:1000 in PBS). Data were acquired by using FACSCanto II
(Becton Dickinson) and analyzed with FlowJo software (Becton Dickinson).
For in vivo imaging, SiglecH-Alexa 488, CD45-PE, and CD31-Alexa 647
were used.

Statistical analysis

All data are presented as mean ± SEM. Significance was calculated with
GraphPad Prism 8. Statistical analyses were performed using a Student t test
or one-way ANOVA as indicated. Significance was defined as follows: *p <
0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

In vivo and in vitro expansion of pDCs

Female C57BL/6 mice were injected s.c. with melanoma cell line B16
secreting FLT3L that results in a massive expansion of all DC subsets in vivo
(4, 44). Seven days after inoculation, spleen and liver were harvested and
pDCs were enriched by gradient centrifugation (Lymphoprep, STEMCELL
Technologies) at 800 × g for 20 min at 20◦C without a break. pDC content
and number were measured by flow cytometry staining before transfer. Cell
suspensions were stained with CSFE (Molecular Probes). When indicated,
pDCs were generated in vitro by incubating BM with FLT3L for 7 d. Cells
were harvested and pDCs were quantified by FACS staining before labeling
with a CellTrace Violet cell proliferation kit (Invitrogen).

Pertussis toxin pretreatment

pDCs were treated with pertussis toxin (PTx) (final concentration 200 ng/ml)
for 2 h at 37◦C and combined with CSFE labeling during the last 20 min
before washing with RPMI 1640 containing 2% FCS. Media-treated pDCs
were mixed with differentially stained cells and injected (in 200 ml of solu-
tion) into the tail veins of mice.

Homing assays

Enriched labeled pDCs were suspended in 2�4 × 107 cells/ml and injected
i.v. After 18 h, recipient mice were sacrificed and spleen, inguinal LNs, liver,
and VAT were harvested and analyzed by flow cytometry. Homing of pDCs
was calculated to the number of injected pDCs. For inhibitory studies, the
number of transferred pDCs was measured and pDCs recovered 18 h later in
different organs were calculated per 1 million injected pDCs. In competitive
homing assays, WT and CCR7−/− cells were either stained with CFSE or
with tetramethylrhodamine-5-isothiocyanate (TRITC; Molecular Probes).
Switching labeling ensured no effect of toxicities for either cell population.
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An index for homing was calculated by a ratio of PTx-treated or CCR7−/−
versus control cells (100%).

Blocking Abs for inhibition studies

The following mAbs were used: Mel-14 (rat IgG2a, anti-murine L-selectin
(45), Bio X Cell] and PS/2 (rat IgG2b, anti-murine a4), which were stored
at −70◦C in endotoxin-free saline at 1 mg/ml. P-selectin and E-selectin were
blocked with RMP-1 and ultra-RME-1/CD62E (BioLegend), respectively.
The integrin a4b7 (LPAM) was blocked with DATK32 (BioLegend), CCR9
with blocking Abs (9B1, BioLegend), and CXCR3 with blocking Abs
(CXCR3-173, BioLegend). For inhibition studies, 100 mg of Ab was directly
injected i.v. before cell transfer (∼1�2 h) or coinjected with pDC suspension.
Administration of the S1PR inhibitor FTY720 (1 mg/kg) or PBS was per-
formed as indicated or by daily i.p. injections.

For long-term blockade mice were fed with SFD (D12450J, Research
Diets) or HFD (D12492, Research Diets) for 1 wk and injected daily i.p.
with 100 mg of mAb against P-selectin (BioLegend) or its isotype control
(IgG2a, MOPC-173). Mice were weighed daily and the weight of VAT was
analyzed on day 7. Glucose tolerance was tested (i.p. glucose tolerance test
[IPGTT]) by injecting 1 mg/kg glucose (Life Technologies) i.p. into 5-h-
starved mice. The level of blood glucose was measured at 10-min intervals
until 90 min after glucose injection.

Tissue preparation

LN, spleen, liver, and epididymal VAT were harvested 18 h after pDC trans-
fer. LNs were smashed through a nylon net (pore size 70 mm). Spleen was
digested with collagenase D (1 mg/ml) and DNase 1 (1 mg/ml) for 20 min
at 37◦C in RPMI 1640 media. Subsequently, the tissue was smashed through
a nylon net and RBC lysis (Pharm Lyse, BD Biosciences) was performed
before FACS staining. Liver was smashed through a nylon net by scraping it
with a lid of the petri dish with PBS and 2 mM EDTA. The cell suspension
was placed on a Lymphoprep gradient (STEMCELL Technologies) and cen-
trifuged at 800 × g without break for 20 min at room temperature. Cells
were harvested from the interphase, washed with PBS, and stained with Abs
for flow cytometry. VAT tissue was minced with a scalpel and digested with
collagenase 2 (1 mg/ml in RPMI 1640 media) for 25 min at 37◦C under con-
tinuous rotation. The suspension was centrifuged and the cell pellet (stromal-
vascular fraction) was taken up in RBC lysis buffer before staining for flow
cytometry.

For the ELISA of IFN-a (PBL IFN Source) and IFN-b (BioLegend) one
fat pad of epididymal VAT was lysed in T-PER tissue protein extraction
reagent (Thermo Fisher Scientific) with protease inhibitor (Roche). The
amount of cytokine was calculated per one total fat pad.

Intravital multiphoton imaging

In female mice VAT is directly attached to the uterus. When establishing the
imaging protocol, we observed that the uterus contracted uncontrollably,
which led to unwanted movements in the videos. Therefore, we preferred
male mice for in vivo imaging. C57BL/6 mice were anesthetized with an i.p
injection of MMF-mix anesthesia (5.0 mg/kg midazolam, 0.5 mg/kg medeto-
midine, and 0.05 mg/kg fentanyl). SiglecH-FITC and CD45-PE Abs were
injected i.v. 15 min before imaging. When indicated, isolated SiglecH-GFP
cells from BM and liver of SiglecH GFP reporter mice (46) were injected
i.p. 6 or 12 h before imaging the rear side of the VAT (facing the intestine).

pDCs from SiglecH-GFP reporter mice were enriched from bone marrow
and transferred via i.p. injection into ubiquitin C�tdTomato mice. Eighteen
hours later, mice were anesthetized with isoflurane (Baxter; 2.5% for induc-
tion, 1�1.5% for maintenance, vaporized in an 80:20 mixture of O2 and air),
VAT was exposed, and intravital microscopy was performed. The imaging
system was composed of a Zeiss 780 upright microscope equipped with a
20-water immersion lens (numerical aperture 1.0; Zeiss), a Chameleon laser
(Coherent) tuned to 820 or 930 nm, and with the ZEN acquisition control
software. The microscope was enclosed in an environmental chamber in
which anesthetized mice were warmed by heated air and the VAT was kept
at 37◦C with warmed PBS. Raw imaging data were processed and analyzed
with Imaris (Bitplane). In addition, imaging was performed using a LaVision
BioTec multiphoton TriM Scope II equipped with a Chameleon pulsed laser
with the range from 800 to 1100 nm. The images were acquired by Inspector
software and processed with Imaris (Bitplane).

Confocal imaging of VAT

VAT was harvested and fixed using PLP buffer (0.05 M phosphate buffer
containing 0.1 M L-lysine [pH 7.4], 2 mg/ml NaIO4, and 10 mg/ml parafor-
maldehyde) for 6 h, then dehydrated in 30% sucrose and stained. Tissue was
permeabilized, blocked, and stained in PBS containing 0.3% Triton X-100
and 1% FCS in a humidified chamber (overnight, 4◦C). After washing, the
tissue was mounted with GenTeal gel (Novartis) or Dako and imaged as

whole mount with the Olympus FluoView BX50WI inverted microscope
with 10×/0.4 and 20×/0.5 objectives or with an LSM 880 with Airyscan
module (Carl Zeiss), with EC Plan-Neofluar 10×/0.3 and Plan-Apochromat
20×/0.8 objectives. Image analysis was performed using ImageJ software
(National Institutes of Health) or with Zen blue software (Carl Zeiss).

Real-time PCR

Liver, spleen, LNs, and VAT were placed in TRIzol (Ambion) and minced.
RNA extraction was performed with a Qiagen RNeasy kit, and cDNA synthe-
sis was performed with an iScript kit (Bio-Rad). RT-PCR was performed on a
LightCycler 480 II (Roche) using a SYBR Green QuantiFast kit (Qiagen).
Relative gene expression was calculated using the DCt method, and the mean
expression level of liver from SFD was set as 1. The following primers were
designed with Roche probe library: CCL19 forward, 59-TGTGGC
CTGCCTCAGATTAT-39, reverse, 59-AGTCTTCCGCATCATTAGCAC-
39; CCL21a forward, 59-TCCAAGGGCTGCAAGAGA-39, reverse, 59-
TGAAGTTCGTGGGGGATCT-39; CCL21b forward, 59-TCCAAGGGCTG
CAAGAGA-39, reverse, 59-TGAAGTTCGTGGGGGATCT-39; CCL25 for-
ward, 59-GAGTGCCACCCTAGGTCATC-39, reverse, 59-CCAGCTGGT
GCTTACTCTGA-39; CD62E (sele) forward, 59-TCCTCTGGAGAGTG
GAGTGC-39, reverse, 59-GGTGGGTCAAAGCTTCACAT-39; CD62P (selp)
forward, 59-TCCAGGAAGCTCTGACGTACTTG-39, reverse, GCAGCG
TTAGTGAAGACTCCGTAT-39; as the housekeeping gene, 18S rRNA was
used, forward, 59-GCCGCTAGAGGTGAAATTCTT-39, reverse, 59-CGTCT
TCGAACCTCCGACT-39.

Results
HFD induces systemic increase of pDCs

In humans, pDC numbers in VAT correlate with an increase in body
mass index (24), suggesting that obesity may affect the homeostasis
of pDCs. Therefore, we studied whether high fat intake alone was
instrumental in provoking systemic alterations of the pDC profile
within the body. We fed male mice for 3 wk with either HFD or SFD
as control, and subsequently analyzed blood, peripheral tissue, lym-
phatic organs, and VAT for the presence of pDCs by flow cytometry
(Supplemental Fig. 1A, 1B). The HFD mediated a gain in body
weight (Fig. 1A) and increased pDC numbers in blood and tissues
(Fig. 1B, Supplemental Fig. 1C�E). In LNs, the absolute pDC num-
ber was reduced, which coincided with a decreased total number of
CD451 cells in the LNs with a HFD (data not shown and Ref. 47).
However, the pDC frequency in the LN revealed no change. The
VAT increased 2-fold in weight after 3 wk of a HFD, and it displayed
increased pDC numbers and frequency (Fig. 1C, Supplemental Fig.
1C�E). Thus, application of HFD altered pDC homeostasis through-
out the body. This observation was largely independent of sex, as
female mice presented a similar systemic increase in pDC number
with a HFD with the exception of BM (Supplemental Fig. 2A�C).
Thus, an obesogenic diet for only 3 wk fundamentally modified the
presence of pDCs in VAT.

pDC localization in FALCs

Next, we studied the distribution profile of pDCs in VAT and found
that they were present in CD451 cell clusters (defined as accumula-
tion of more than five CD451 cells, minimal diameter of 50 mm,
and minimal proximity between cells of 10 mm), so-called FALCs,
which mainly localized in the peripheral area of the tip part of the
epididymal VAT (Fig. 2A, 2B, blue areas). In 3-wk-old mice, only
some VAT-pDCs were detectable at CD311 blood vessels and
FALCs were absent (Fig. 2C, left), whereas 8-wk-old mice pre-
sented FALCs (Fig. 2C, right), suggesting that FALCs develop in
postnatal life. When mice were fed with HFD for 3 wk, FALCs sig-
nificantly increased in number from ∼22 to 38 per mm3 (Fig. 2D,
2E). A 3-fold increased mean fluorescence intensity (MFI) of CD45
within the FALCs after feeding a HFD further indicated an accumu-
lation of CD451 cells in VAT resulting in a larger size of FALCs
(Fig. 2D, 2F). Thus, a HFD promotes FALC formation and enlarge-
ment. Next, we established intravital multiphoton microscopy to
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uncover the mobility of pDCs in VAT in detail. Isolated SiglecH-
GFP1 pDCs were transferred into mice ubiquitously expressing
tdTomato to identify the tissue structure, including hematopoietic
cells, blood vessels, stromal cells, and adipocytes. After
18 h, pDCs were found in peripheral areas of VAT (Supplemental
Fig. 2D). Interestingly, most pDCs were present within clusters
of tdTomato1 cells (Supplemental Fig. 2D, Supplemental Video 1).
Again, these clusters were localized in the tip area, similar to the
CD451 clusters, the so-called FALCs, indicating the dynamics of
pDC trafficking into FALCs (see Fig. 2A). Intravital imaging con-
firmed that the increase of FALCs upon HFD (Fig. 2G) was accompa-
nied by a substantial rise in VAT-resident pDCs (Fig. 2H, left), which
preferentially localized within the FALCs. In this study, the abundance
of pDCs in the FALCs increased from ∼18 cells per mm2 with SFD
to 63 cells per mm2 with HFD (Fig. 2H, middle). The migratory
speed of endogenous pDCs in VAT changed from resident-like (3
mm/min) to migratory (10 mm/min) behavior (Fig. 2H, right). For a

control, we compared the migratory pattern of endogenous and trans-
ferred pDCs. There was no difference in migratory speed within these
groups. This was true for application of SFD or HFD, respectively
(Supplemental Fig. 2E, 2F). In addition, transferred pDCs increased
in FALCs similar to endogenous pDCs when HFD was applied
(Supplemental Fig. 2G, 2H). This supports the notion that pDC traf-
ficking and accumulation within FALCs are altered by HFD.

Multistep adhesion cascade for pDC homing to the VAT requires
P-selectin

Next, the recruitment of pDCs to VAT, secondary lymphoid organs,
and non-lymphoid, yet metabolic active tissue, here the liver, was
evaluated in mice with a SFD. pDCs were expanded, harvested,
enriched, and labeled before transfer (Supplemental Fig. 3A, 3B).
As selectin-mediated tethering and rolling are the first steps of the
multistep adhesion cascade in postcapillary venules (48), we inhibited
selectin function in short-term adoptive transfer experiments using
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specific function-blocking mAbs (Fig. 3A). PSGL-1, the carbohydrate
ligand of P-selectin, was detectable on pDCs (Supplemental Fig. 3C)
(49), and blocking P-selectin reduced immigration of pDCs to liver
and LNs to some extent (Fig. 3B). The pDC immigration to VAT
was completely abolished upon blocking P-selectin, indicating an
absolute dependency on P-selectin for pDCs homing to VAT under
steady-state conditions (Fig. 3B). In contrast, splenic pDCs did not
require P-selectin for immigration (Fig. 3B). As pDCs express and
employ L-selectin to home to peripheral LNs (Supplemental Fig. 3C)
(50, 51), we blocked L-selectin via MEL-14 mAb treatment. Indeed,
the immigration to LNs was significantly reduced (Fig. 3C), but traf-
ficking of pDCs to all other tissues such as liver, spleen, and VAT

was not affected (Fig. 3C). Moreover, we did not find any relevance
of E-selectin for pDC homing in mice fed with a SFD (Fig. 3D).

HFD treatment changes the rolling activity of pDCs in VAT

To elucidate whether HFD modified the homing process, we studied
pDC homing in mice with a SFD or HFD (Fig. 4A). Upon adoptive
transfer of pDCs, substantial pDC homing to liver, spleen, and LNs
was observed within 18 h (Fig. 4B). Strikingly, VAT of HFD mice
showed more immigrated pDCs compared with SFD mice (Fig.
4B). The application of blocking Abs against P-selectin during a
HFD reduced homing of pDCs to VAT, albeit in contrast to a SFD,
this blockade was not complete (Fig. 4C). Interestingly, after HFD,
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L-selectin blockade significantly impaired homing of pDCs to VAT
similar to the LNs (Fig. 4D). Moreover, E-selectin, which also did
not have any relevance for pDC homing with a SFD (see Fig. 3D),
contributed to pDC immigration to VAT, as blocking of E-selectin
diminished pDC homing whereas homing to spleen, liver, or LNs
was unaffected (Fig. 4E). In line with these findings, the mRNA
expression of CD62E specifically increased 50-fold in VAT but not
in liver, spleen, and LNs upon HFD compared with a SFD,

indicating that high caloric intake alters the molecular signature of
VAT (Supplemental Fig. 4A).

pDC homing to VAT requires integrins and Gai protein signaling

The next critical step in the multistep adhesion cascade is the transi-
tion from rolling to stable arrest, which is mediated by adhesion
receptors of the integrin family (52). As pDCs expressed the integ-
rins a4b1 and a4b7 (51, 53) (Supplemental Fig. 3C), we analyzed
whether they mediate pDC immigration to VAT. Blocking a4b7

integrins revealed that they are required for pDC homing to VAT
but not to liver, spleen, or LNs (Fig. 5A). The blockade of all a4

integrins showed that pDC homing to liver and spleen did not
require a4 integrin activity (Fig. 5B) but, as expected (51), the
immigration to LNs was reduced by ∼50% (Fig. 5B). pDC immi-
gration to VAT was strictly dependent on a4 integrins, as its block-
ade completely abolished pDC infiltration into VAT (Fig. 5B),
indicating that pDC homing to LNs and VAT required a4b1 integ-
rins, but VAT immigration additionally relied on a4b7 integrins.
Integrin adhesion requires G protein�coupled receptor (GPCR) sig-
naling, which is sensitive to PTx (54). To decipher the involvement
of GPCRs in pDC homing to VAT, competitive homing assays
were performed where 50% of pDCs were treated with PTx and
coinjected with 50% control pDCs (Fig. 5C, left). Indeed, inhibiting
GPCR signaling blocked pDC homing to LNs and, interestingly,
also to VAT (Fig. 5C, right), whereas homing to spleen and liver
was not affected (Fig. 5C, right). As CCR7 is expressed by pDCs
(Supplemental Fig. 3C) and represents a key factor for LN entry via
HEVs (34), we performed a competitive homing assay with WT
and CCR7−/− pDCs (Fig. 5D). While pDC homing to liver and
spleen did not require CCR7, the infiltration to peripheral LNs was
significantly reduced as expected (34). Strikingly, the immigration
of pDCs to VAT was also inhibited, indicating a necessity of CCR7
signaling for pDC immigration to VAT already with SFD (Fig. 5D).
Further treatment with a HFD did not change this requirement (Fig.
5D). Accordingly, qPCR analysis revealed that different CCR7
ligands, namely CCL19, CCL21a, and CCL21b, were expressed in
VAT (Supplemental Fig. 4A), pointing toward a role of the CCR7/
CCR7 ligand axis. The application of a HFD increased the expres-
sion of CCL21a in spleen but not significantly in VAT
(Supplemental Fig. 4A). Other chemokine receptors expressed by
pDCs such as CXCR3 (Supplemental Fig. 3C) and CCR9 were not
essential for pDC homing to VAT, and CCL25 expression was not
detected in any organ analyzed (Supplemental Fig. 4B�D). Thus, in
addition to a4 integrins, homing of pDCs to VAT involved CCR7
signaling.

pDC turnover in VAT changes with HFD

In LNs, pDCs egress to the blood via efferent lymphatics in a S1P-
mediated fashion (55). To analyze the number of pDCs that entered
VAT, remained there, and potentially egressed to the bloodstream, we
measured the number of pDCs in VAT under homeostatic conditions
(Fig. 6A, c1) and after daily application of FTY720 for 7 d, resulting
in S1PR internalization (Fig. 6A, c2, 6B). FTY720 led to a significant
increase in number of pDCs in VAT with a SFD (Fig. 6B), which
became 3-fold higher when applied with a HFD (Fig. 6B), indicating
that pDC dynamics and turnover in VAT changed with a HFD. Calcu-
lating the magnitude from the cell number gained in condition c1 and
c2 from SFD and HFD showed that the pDC infiltration was 3-fold
higher when mice received additionally a HFD (Fig. 6D, left). To gain
further insight into this process, we blocked the infiltration of pDCs to
VAT by inhibiting a4b7 integrins (Fig. 6A, R, c3), which led to a
decrease in pDC number. The additional treatment with FTY720 (Fig.
6A, c4) revealed an equilibrium of infiltrating and emigrating pDCs
under SFD conditions (Fig. 6C, black bars), as it rescued the pDC
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number to the level seen with isotype control. Upon HFD
this changed as the inhibition of pDC infiltration could not decrease
the pDC number within the VAT as efficient as with a SFD. Further-
more, the additional blockade of the egress revealed that there was no
equilibrium of incoming and emigrating cells anymore (Fig. 6C, red
bars). According to the scheme in Fig. 6A, we calculated that the pDC
infiltration increased 3-fold within 1 wk of a HFD (Fig. 6D, left),

although the egress did not change (Fig. 6D, right) and retention was
prolonged (Fig. 6D, middle). Thus, pDC turnover changed dramati-
cally in VAT with a high caloric diet.

HFD induces activation of pDCs in VAT

As a HFD rapidly altered recruitment and turnover of pDCs in VAT
as seen in LNs during viral infection (42, 56), we analyzed whether a
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HFD mediated pDC activation accordingly. Indeed, pDCs in VAT
expressed significantly higher levels of activation markers with a
HFD compared with a SFD, namely PDC-TREM, CD69, CD86, and
CD107, as measured by MFI. The tetraspanin molecule CD9 expres-
sion did not change (Fig. 7A, left), suggesting that a HFD did not
simply changed pDC composition (57, 58). In contrast, the expression
of activation markers of splenic pDCs showed no difference with a
HFD versus SFD (Fig. 7A, right), indicating that the change of pDC
phenotype upon an obesogenic diet was specific for VAT. As activa-
tion of pDCs is usually accompanied by robust IFN-I expression, we
measured the expression of IFN-I by pDCs in VAT using MOB mice
known to mark IFN-b production by YFP expression (43). In MOB
mice fed with SFD, ∼20% of all pDCs expressed YFP (Fig. 7B),
which increased to >40% with a HFD (Fig. 7B). Furthermore, the
intensity of YFP increased with a HFD, indicating an increase of
IFN-b expression per pDC (Fig. 7B, right). Accordingly, the absolute
amount of IFN-b protein in the VAT was significantly upregulated
(Fig. 7C, left). Furthermore, IFN-a was 7-fold upregulated in VAT
when a HFD was fed (Fig. 7C, right). In summary, a high-caloric diet
specifically activated pDCs in VAT resulting in increased expression
of IFN-I. To study the functional impact of pDC trafficking and acti-
vation during HFD, we blocked P-selectin by daily injection of a
function-blocking Ab (Fig. 7D). Mice receiving isotype control Ab in
parallel to a HFD significantly gained body weight starting at day 4
of HFD. In contrast, mice that received a HFD and the P-selectin
blocking Ab did not show increased body weight and remained at the
level of SFD-treated mice (Fig. 7E). An IPGTT showed that mice
treated with HFD in combination with P-selectin blocking Abs had
an improved capability to systemically use glucose when compared
with isotype-treated HFD-fed mice (Fig. 7F). Furthermore, whereas
the weight of VAT in HFD- and isotype-treated mice increased, the

treatment with P-selectin blocking Ab during HFD led to reduced
weight gain of adipose tissue (Fig. 7G), suggesting that blocking P-
selectin can prevent an obesogenic switch at least to some extent
upon HFD in our model.

Discussion
The immune system components within VAT are important and
diverse regulators of metabolic processes. They can drive the onset
of the metabolic syndrome but may also contribute to its prevention
(6, 8, 19). Upon activation, pDCs provide a rapid IFN-I response
characterizing the early reaction of the host to disturbances in homeo-
stasis, as described for infections (59). pDCs also respond to meta-
bolic cues as has been shown by increased pDC abundance in VAT
of humans with obesity (24). Our comprehensive analysis of pDC dis-
tribution in different organs of lean and obese mice revealed a sys-
temic pDC response, with increased numbers in blood, liver, BM,
spleen, and VAT upon HFD, with the exception of the LN, as
reported earlier (47). In 3-wk-old mice, VAT-resident pDCs were
located at the abluminal side of small capillaries even before FALCs
were detectable. Accordingly, FALCs start to develop only postna-
tally (18), whereas secondary lymphoid organs develop during
embryogenesis (60, 61). In 8-wk-old mice, however, pDCs were pref-
erentially detectable in FALCs where they showed a similar migra-
tory speed as in LNs under steady-state conditions (56). As FALCs
represent lymphoid tissues that orchestrate adaptive immune res-
ponses that in turn require pDCs, our results imply a prominent role of
these cells in FALC and VAT biology (17, 21, 62). During a HFD, the
number of FALCs increased and their volume was enlarged. Further-
more, pDCs within FALCs showed a higher density and an increased
migratory speed. To investigate the biology of pDCs, we expanded
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the pDC population using the B16-FLT3L system, as the endogenous
pDC number was too low to perform homing experiments. This
approach has been widely used in earlier studies to analyze the func-
tion and homing of pDCs (33, 34). Moreover, we showed that the
expression profile of adhesion molecules of FLT3L-expanded pDCs
(Supplemental Fig. 3C) was similar to the molecular signature of
adhesion molecules expressed by endogenous pDCs, demonstrating
their suitability for our studies. The homing of pDCs to VAT required
P-selectin already under normal conditions, indicating that the VAT
milieu differs from other peripheral organs (63). In contrast, E-selectin
was not employed by pDCs under normal conditions but with HFD.
The involvement of E-selectin in pDC recruitment to VAT but not to
LNs suggests that 3 wk of a HFD were sufficient to cause an inflam-
matory state in VAT, whereas the peripheral LN was spared. This was
confirmed by the fact that we found a substantial increase of E-selectin
mRNA expression specifically in VAT upon a HFD compared with a
SFD but not in other organs, including liver, spleen, and LNs.
Whereas P-selectin can be prestored in Weibel�Palade bodies of
endothelial cells, E-selectin is expressed de novo upon stimulation by
inflammatory mediators (49, 64). In addition, L-selectin was
expressed by pDCs but it was not required for pDCs homing to VAT
under normal conditions. However, L-selectin became important with
a HFD when VAT is remodeled (65). Interestingly, the expression
profile of homing molecules on pDCs, including PSGL-1, CD62L,
CD49d, a4b7, and CCR7, was largely unaffected by HFD (data not
shown), suggesting that rather a switch of VAT toward an

inflammatory milieu than a pDC-intrinsic mechanism mediates
increased pDC homing to and retention in VAT (20, 66).
Two of the most relevant adhesion molecules for leukocyte hom-

ing are a4b1 and a4b7 integrins, and we confirmed their expression
by pDCs (51, 67). Whereas homing of pDCs to LN involved a4b1

integrins only, the VAT infiltration additionally relied on a4b7 integ-
rins, usually employed for pDC homing to the gut (68). Integrin acti-
vation requires Gai-mediated PTx-sensitive signaling and, indeed, the
treatment with PTx prevented pDC infiltration to VAT and LNs, indi-
cating an essential Gai signaling for this recruitment process.
pDCs expressed CCR7, which signals via Gai, and identical to LN

homing, pDCs required CCR7 signaling to infiltrate VAT during
SFD and HFD. Gene expression analyses revealed expression of
CCR7 ligands within spleen, LNs, and VAT, suggesting a functional
role of this chemokine receptor axis under both conditions. Although
pDCs express CCR9 (33, 69), mRNA expression of its ligand CCL25
could not be identified. However, chemokines do not require local
gene expression, as they can be transported and presented via glyco-
saminoglycans, but CCR9 engagement for pDC homing to VAT,
spleen, liver, and LNs as shown for thymus and gut (33, 70) could not
be observed. Similarly, CXCR3 signaling was not involved in pDC
homing to VAT, but may be required for inner tissue migration as
shown for intranodal positioning within the LN (71).
Studying pDC dynamics in VAT revealed that a HFD led to a

rise in pDC number in VAT, and blocking the egress with FTY720
further resulted in a 3-fold increase, indicating that pDCs actively
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left the VAT via a S1P-dependent mechanism. Moreover, our data
indicated an equilibrium of pDC influx and efflux under homeostatic
conditions with SFD. A HFD increased the number of infiltrating
pDCs and prolonged their retention, resulting in a rise of total pDC
number in VAT. In addition, pDCs showed a higher expression of the
early activation marker CD69 with a HFD. For activated T cells in
the LN, it has been demonstrated that CD69 physically interacts with
S1PR, resulting in downregulation of S1PR surface expression and
thereby blocking S1P-mediated T cell egress (72). Although obese
humans present elevated S1P levels in the blood (73), we did not find
an increased egress of pDCs from VAT, which may be due to their
upregulated CD69 expression with HFD. In LNs, higher retention
times of pDCs coincide with a change to an activated phenotype (55).
Indeed, VAT pDCs displayed an activated phenotype with a HFD.
Moreover, 20% of all pDCs expressed IFN-I in the steady state,
which was similar to pDCs in other peripheral tissues (43), whereas
obesogenic diet increased IFN-I expression by pDCs up to 40% in
VAT. IFN-I in turn contributes to the polarization of M2 macro-
phages to M1 macrophages, thereby promoting proinflammatory
cytokine release and fueling meta-inflammation, leading to systemic
insulin resistance (24).
Thus, pDCs reside preferentially in FALCs of VAT in adult mice

under steady-state conditions and display increased homing to and
retention in VAT after 3 wk of HFD, resulting in an accumulation of
pDCs caused by a shift of VAT toward an inflammatory state as out-
lined by dramatically increased E-selectin expression. In vivo imaging
showed an increase of migratory speed after high caloric intake, indi-
cating a transition from a rather stationary to scanning mode within
the FALCs. The dramatic disturbances of trafficking with a HFD coin-
cide with an activation of pDCs and increased IFN-I expression in
VAT, suggesting a potential mechanistic link by which IFN-I may
render VAT into a chronic inflammatory tissue (41).
This hitherto unknown modulation of pDC homeostasis by a HFD

may shed new light on the impact of our daily diet on the complex
interplay between the immune system and adipose tissue, a topic that
is of great clinical importance. Interestingly, the genetic abrogation of
IFN-I signaling prevents the development of obesity (22), identifying
pDCs as a potentially powerful target to treat obesity. Recently, IFN-I
from pDCs in VAT has been demonstrated to fuel the loss of VAT-
resident regulatory T cells that results in an obesogenic phenotype
(41). Furthermore, the blockade of pDC infiltration into VAT by P-
selectin blockade in combination with a HFD prevented gain of body
weight and improved glucose tolerance at least during the first week
of high caloric intake. Thus, pDC trafficking may represent an inter-
esting target for therapeutic intervention in obesity by preventing
weight gain and the metabolic syndrome.
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